Author Topic: FE Sample--Problem 4  (Read 5457 times)

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2607
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
FE Sample--Problem 4
« on: November 27, 2018, 03:57:15 AM »
(a) Find the Mobius's transformation $f(z)$ mapping the unit disk $\{z\colon |z|<1\}$ onto exterior $\{w\colon |w|>1\}$ of the unit disk, such that $f(0)=5$ and $f(-1)=-1$.

(b) Find the fixed points of $f$ (points s.t. $f(z)=z$).

(c) Find the stretch ($|f'(z)|$) and the rotation angle ($\arg(f'(z))$) of $f$ at $z$.
« Last Edit: November 30, 2018, 04:03:07 AM by Victor Ivrii »

Yilin Wang

  • Newbie
  • *
  • Posts: 2
  • Karma: 4
    • View Profile
Re: FE Sample--Problem 4
« Reply #1 on: November 30, 2018, 12:41:13 AM »
solution for part a, b and c