MAT244--2018F > MAT244--Lectures & Home Assignments
Final Review question
(1/1)
RubyZhan:
Find the general solution of
$2x^2 y'' + 3xy' - y = 0$
Meiyi Lu:
Euler Suppose $y = x^r$
$\therefore$ $ y' = rx^{r-1}$
$y'' = r(r-1)x^{r-2}$
$2x^2\cdot r(r-1) X^{r-2} + 3x \cdot rX^{r-1} - X^r = 0$
$\therefore$ $X^r (r^2+3r + 2) = 0$
$\therefore$ $r^2 + 3r +2 =2 \qquad r = -2 \qquad r=-1$
$\therefore$ $y = c_1 X^{-1} + c_2 X^{-2}$
Zhihao Zuo:
Will Variation of Parameters method work??
ansleyliu:
I think better stick with Euler since there's 2x^2 in front of 𝑦″
Navigation
[0] Message Index
Go to full version