MAT334--2020F > Quiz 2

Quiz2-6101 6D


Junhong Zhou:
Problem(3pt). Find all points of continuity of the given function;
\begin{cases}\frac{z^4-1}{z-i},& z\neq i\\4i, & z=i


f(z) is continuous when $z\neq i$.

When z = i, then


$z - i = i-i = 0$

Now use the L'Hospital's Rule we have:
    \lim_{z \to i} \frac{z^4-1}{z-i} &= \lim_{z \to i} \frac{4z^3}{1}\\
    &= 4i^3\\
    &= -4i\\
    & \neq 4i
Therefore f(z) is not continuous at z = i.


[0] Message Index

Go to full version