Author Topic: differences between proper and improper nodes  (Read 14153 times)

Richard Qiu

  • Newbie
  • *
  • Posts: 1
  • Karma: 0
    • View Profile
differences between proper and improper nodes
« on: November 18, 2019, 02:19:33 PM »
Hello guys, could anyone help me to explain the differences between proper and improper nodes? btw, any suggestions on how to remember the types and stability of the critical points?

Amanda-fazi

  • Newbie
  • *
  • Posts: 3
  • Karma: 1
    • View Profile
Re: differences between proper and improper nodes
« Reply #1 on: November 18, 2019, 02:35:47 PM »
Since both proper and improper nodes have equal eigenvalues, the differences between these two nodes is that: proper node/star point has two independent eigenvectors, while improper/degenerate node has only one independent eigenvector by (A-rI)x =0, and we create a generalized eigenvector associated with the repeated eigenvalues by letting (A-rI)y = x.

« Last Edit: November 18, 2019, 03:21:26 PM by Amanda-fazi »

Amanda-fazi

  • Newbie
  • *
  • Posts: 3
  • Karma: 1
    • View Profile
Re: differences between proper and improper nodes
« Reply #2 on: November 18, 2019, 02:49:15 PM »
There are mainly 5 cases of Eigenvalues(from book Elementary Differential Equations and Boundary Value Problems-11th Edition section 9.1):
as it is mentioned above, the equal eigenvalues case mentioned above is CASE 3.

                    CASE 1: Real, Unequal Eigenvalues of the Same Sign             
                    CASE 2: Real Eigenvalues of Opposite Sign                            ->saddle point
                    CASE 3: Equal Eigenvalues
                    CASE 4: Complex Eigenvalues with Nonzero Real Part
                    CASE 5: Pure Imaginary Eigenvalues                                     ->center

After memorized there are five cases, CASE 1, CASE 3 and CASE 4 have two branches while the rest of the cases(CASE 2 and CASE 5) only have one:
to be more specific:

CASE 1: Real, Unequal Eigenvalues of the Same Sign separated into:           
                     a)lambda1 >lambda2 >0:
                                        critical point called node/nodal source
                     a)lambda1 <lambda2 <0:
                                        critical point called node/nodal sink

CASE 3:Equal Eigenvalues separated into:
                     a)two independent eigenvectors:
                                        critical point called proper node or star point
                     b)one independent eigenvector:
                                        critical point called improper node or degenerate node

CASE 4:Complex Eigenvalues with Nonzero Real Part separated into:
                     a)pointing-outward trajectories as lambda > 0:
                                        critical point called spiral source
                     a)pointing-inward trajectories as lambda < 0:
                                        critical point called spiral sink

For the stability, as long as there is one lambda>0, then it is unstable, and the last one lambda=0 is stable. For the rest of them, asymptotically stable applied.

 
« Last Edit: November 18, 2019, 03:20:51 PM by Amanda-fazi »

anntara khan

  • Jr. Member
  • **
  • Posts: 6
  • Karma: 0
    • View Profile
Re: differences between proper and improper nodes
« Reply #3 on: November 20, 2019, 04:03:25 PM »
I made this handy color coded guide to help me remember all the cases:
 
« Last Edit: December 05, 2019, 09:37:34 PM by anntara khan »

anntara khan

  • Jr. Member
  • **
  • Posts: 6
  • Karma: 0
    • View Profile
Re: differences between proper and improper nodes
« Reply #4 on: December 11, 2019, 09:59:34 PM »
Based on the stability near locally linear system I have extended the previously posted table, hope this helps remembering :)