Author Topic: MT, P5  (Read 3821 times)

Victor Ivrii

• Elder Member
• Posts: 2570
• Karma: 0
MT, P5
« on: October 09, 2013, 07:23:31 PM »
Apply the Euler method with step $h=\frac{1}{3}$ to the initial value problem
\begin{equation*}
\end{equation*}
to find approximate values of $y(\frac{1}{3}), y(\frac{2}{3})$ and $y(1)$.

Xuewen Yang

• Full Member
• Posts: 17
• Karma: 8
Re: MT, P5
« Reply #1 on: October 09, 2013, 10:04:35 PM »
see attach

Xiaozeng Yu

• Full Member
• Posts: 16
• Karma: 4
Re: MT, P5
« Reply #2 on: October 09, 2013, 10:40:12 PM »
5

Huan Ying Huang

• Newbie
• Posts: 1
• Karma: 2
Re: MT, P5
« Reply #3 on: October 09, 2013, 10:50:10 PM »
$y(0)=0$,
$$y_n=y_{n-1}+h f(t_n,y_n),$$
with $f(t,y)=3y^2-t$.

$t_0=0$, $y_0=0$,  $f(t_0,y_0)=0$,

$y_1=0+\frac{1}{3}\cdot 0=0$.

$t_1=\frac{1}{3}$,   $y_1=0$,  $f(t_1,y_1)=-\frac{1}{3}$,

$y_2= 0+ \frac{1}{3}\cdot (-\frac{1}{3})=-\frac{1}{9}$,

$t_2=\frac{2}{3}$,   $y_2=-\frac{1}{9}$,  $f(t_2,y_2)=-\frac{17}{27}$,

$y_3=-\frac{1}{9}+\frac{1}{3}\cdot (-\frac{17}{27}) =-\frac{26}{81}$.

I edited this post. Do not use "x" or "*" for multiplication (* is a convolution, to be studied in APM346 f.e.)  V.I.
« Last Edit: October 10, 2013, 06:25:34 AM by Victor Ivrii »