Toronto Math Forum
Welcome,
Guest
. Please
login
or
register
.
1 Hour
1 Day
1 Week
1 Month
Forever
Login with username, password and session length
News:
Home
Help
Search
Calendar
Login
Register
Toronto Math Forum
»
MAT244--2018F
»
MAT244--Tests
»
Quiz-1
»
Q1: TUT0301
« previous
next »
Print
Pages: [
1
]
Author
Topic: Q1: TUT0301 (Read 4850 times)
Victor Ivrii
Administrator
Elder Member
Posts: 2607
Karma: 0
Q1: TUT0301
«
on:
September 28, 2018, 03:30:24 PM »
Find the general solution of the given differential equation, and use it to determine how solutions behave as $t\to\infty$.
\begin{equation*}
y' - 2y = e^{2t},\qquad y(0)=2.
\end{equation*}
Logged
Jiabei Bi
Jr. Member
Posts: 7
Karma: 10
Re: Q1: TUT0301
«
Reply #1 on:
September 28, 2018, 06:00:22 PM »
answer to tut0301
Logged
Yifei Gu
Newbie
Posts: 3
Karma: 2
Re: Q1: TUT0301
«
Reply #2 on:
September 29, 2018, 03:13:34 PM »
$$
y' - 2y = e^{2t}\\\mu (x) = e^{\int-2\ dt} = e^{-2t}\\\frac{d}{dt} (e^{-2t}y) = e^{-2t}y' -2e^{-2t} y = e^{-2t}e^{2t}= 1\\ \text{integral on both side gives:}\\ e^{-2t}y = t + C\\y = te^{2t} + C{e^{2t}}\\y(0) = 0 + C = 2 \implies C = 2\\\text{thus} \ \ y =e^{2t}(t+2)\\\text{and} \ \ t \to \infty \implies y \to \infty
$$
Logged
Print
Pages: [
1
]
« previous
next »
Toronto Math Forum
»
MAT244--2018F
»
MAT244--Tests
»
Quiz-1
»
Q1: TUT0301