31
Quiz-5 / Re: Quiz 5, T5102
« on: March 08, 2018, 07:23:50 AM »
George:
The reason that the absolute value is missing is that the contour you choose must depend on the sign of $k$ If $k<0$ then your contour should instead be upper semicircle and if $k>0$ then you are right. This is done to satisfy the hypothesis of Jordan's lemma, which you implicitly used to control the integral over the arc as it increasese.
Also what property do you refer to? I think $\hat{xf}=i\hat{f}'$?
Beside: don't we always use $\frac{1}{2\pi}$ for the scaling? and this for one thing at least better suit Residual Theorem.
$$\hat{f}(\omega)=\frac{1}{2\pi}\int_{-\infty}^\infty \frac{e^{-i\omega x}}{(x-ai)(x+ai)}=\left\{\begin{align*}\left.i\frac{e^{-i\omega x}}{x+ai}\right|_{x=ai}&&\omega<0\\ \left.-i\frac{e^{-i\omega x}}{x-ai}\right|_{x=-ai}&&\omega>0\end{align*}\right.=\frac{e^{-|\omega|a}}{2a} $$
And so immediately
$$\hat{xf}(\omega)=i\hat{f}'(\omega)=-i \text{sgn}(\omega)\frac{e^{-|\omega|a}}{2}$$
The reason that the absolute value is missing is that the contour you choose must depend on the sign of $k$ If $k<0$ then your contour should instead be upper semicircle and if $k>0$ then you are right. This is done to satisfy the hypothesis of Jordan's lemma, which you implicitly used to control the integral over the arc as it increasese.
Also what property do you refer to? I think $\hat{xf}=i\hat{f}'$?
Beside: don't we always use $\frac{1}{2\pi}$ for the scaling? and this for one thing at least better suit Residual Theorem.
$$\hat{f}(\omega)=\frac{1}{2\pi}\int_{-\infty}^\infty \frac{e^{-i\omega x}}{(x-ai)(x+ai)}=\left\{\begin{align*}\left.i\frac{e^{-i\omega x}}{x+ai}\right|_{x=ai}&&\omega<0\\ \left.-i\frac{e^{-i\omega x}}{x-ai}\right|_{x=-ai}&&\omega>0\end{align*}\right.=\frac{e^{-|\omega|a}}{2a} $$
And so immediately
$$\hat{xf}(\omega)=i\hat{f}'(\omega)=-i \text{sgn}(\omega)\frac{e^{-|\omega|a}}{2}$$