1

**Chapter 4 / 4.2 Example 4ï¼ˆperiodicï¼‰**

« **on:**November 02, 2016, 02:10:55 PM »

$$X^{''} + \lambda X = 0$$

with condition $$X(0) = X(l), X^{'}(0) = X^{'}(l)$$

how to get the answer $$\lambda_{2n-1} = \lambda_{2n} = (\frac{n\pi}{2l})^{2}$$ and the corresponding eigenfunctions?

with condition $$X(0) = X(l), X^{'}(0) = X^{'}(l)$$

how to get the answer $$\lambda_{2n-1} = \lambda_{2n} = (\frac{n\pi}{2l})^{2}$$ and the corresponding eigenfunctions?