Author Topic: Quiz3 1-F  (Read 398 times)

Kexin Wang

  • Jr. Member
  • **
  • Posts: 8
  • Karma: 0
    • View Profile
Quiz3 1-F
« on: February 14, 2022, 07:08:03 PM »
\begin{equation}
    \begin{cases}
      u_{tt}- c^2u_{xx} = 0 &\ x>0\\
      u\rvert_{t = 0} = sech(x) &\ x>0\\
      u_{t}\rvert_{t = 0} = 0 &\ x>0\\
      u_{x}\rvert_{x = 0} = 0 &\ t>0\\
    \end{cases}       
\end{equation}

For this problem, my approach was to extend $sech(x)$ as an even function for $x \in R$. Since $sech(x)$ is already an even function so we can write the set of equations as follows.

\begin{equation}
    \begin{cases}
      u_{tt}- c^2u_{xx} = 0 &\ x>0\\
      u\rvert_{t = 0} = sech(x)\\
      u_{t}\rvert_{t = 0} = 0 &\ x>0\\
    \end{cases}       
\end{equation}

And by using D'Alembert Formula $u(x,t) =\frac{1}{2}[g(x+ct)+g(x-ct)] $ we can simplify it as $\frac{1}{2}[sech(x+ct)+sech(x-ct)]$ $,x>0$