f(z)=$\frac{1}{z^2+2z+2}$
Let $z^2+2z+2=0,$ we can have $\ {(z+1)}^2=i^2,{\ z}_1=i-1,\ z_2=-i-1$
let $f\left(z\right)=\ \frac{1}{z^2+2z+2}=\ \frac{A}{z-\left(i+1\right)}+\frac{B}{z-\left(-i-1\right)}$
= $\frac{A\left(z-\left(-i+1\right)\right)+B(z-\left(i+1\right))}{(z-\left(i+1\right))(z-\left(-i+1\right))}$
=$\frac{\left(A+B\right)z-A-B+\left(A-B\right)i}{(z-\left(i+1\right))(z-\left(-i+1\right))}$
After calculation, we can have $A=-i/2,\ B=i/2$
So f(Z) = $\frac{-i}{2}\bullet \frac{1}{z-\left(i+1\right)}+\frac{i}{2}\bullet \frac{1}{Z-(-i+1)}$
a, f(z) = $-\frac{i}{2}\bullet \frac{1}{i+1}\bullet \frac{1}{\frac{z}{i+1}-1}+\frac{i}{2}\bullet \frac{1}{-i+1}\bullet \frac{1}{\frac{z}{-i+1}-1}$
= $\frac{i}{2(i+1)}\bullet \sum^{\infty }_{n=0}{{(\frac{z}{i+1})}^n-\frac{i}{2(1-i)}\sum^{\infty }_{n=0}{{(\frac{z}{-i+1})}^n}}$
For convergence, we need $\left|\frac{z}{i+1}\right|<1,\ \left|\frac{z}{-i+1}\right|<1,\ \ so\ we\ can\ have\ z<\sqrt{2}.$
b, f(z) = $-\frac{i}{2}\cdot \frac{1}{z}\cdot \frac{1}{1-\frac{i+1}{z}}$ + $\frac{i}{2}\cdot \frac{1}{Z}\cdot \frac{1}{1-\frac{-i+1}{z}}$
= $\frac{i}{2z}\cdot \sum^{\infty }_{n=0}{{(\frac{i+1}{z})}^n-\frac{i}{2z}\sum^{\infty }_{n=0}{{(\frac{1-i}{z})}^n}}$
For convergence, we need $\left|\frac{i+1}{z}\right|<1,\ \left|\frac{1-i}{z}\right|<1,\ so\ we\ can\ have\ z>\sqrt{2}$
When z =$\sqrt{2}$ , for $\sum^{\infty }_{n=0}{a_n},\ {\mathop{\mathrm{lim}}_{n\to \infty } a_n\neq 0\ }$, so we can conclude it is geometric divergent.