First, let's show the given DE $x^{2}y^{3} + x(1+y^{2})y' = 0$ is not exact.
Define $M(x,y)=x^{2}y^{3}$, $N(x,y)=x(1+y^{2})$
$$M_y = \frac{\partial}{\partial y}[x^{2}y^{3}] = 3x^{2}y^{2}$$ $$N_x = \frac{\partial}{\partial x}[x(1+y^{2})] = 1+y^{2} $$
Since $3x^{2}y^{2} ≠ 1+y^{2}$, this implies the given DE is not exact.
Now, let's show that the given DE multiplied by the integrating factor $\mu(x,y) = \frac{1}{xy^{3}}$ is exact.
That is to show $$\frac{1}{xy^{3}}x^{2}y^{3} + \frac{1}{xy^{3}}x(1+y^{2})y' = x + (y^{-3}+y^{-1})y'= 0$$ is exact.
Define $M'(x,y) = x$, $N'(x,y) = y^{-3}+y^{-1}$
Since
$$M'_y = \frac{\partial}{\partial y}(x) = 0 $$ $$N'_x = \frac{\partial}{\partial x}[y^{-3}+y^{-1}] = 0 $$
By theorem in the book, we can conclude that $x + (y^{-3}+y^{-1})y'= 0$ is exact.
Thus, we know there exists a function $\phi(x,y)=C$ which satisfies the given DE.
Also,
$$ \frac{\partial \phi}{\partial x} = x $$ $$ \frac{\partial\phi}{\partial y} = y^{-3}+y^{-1}$$
Integrate $\frac{\partial \phi}{\partial x} = x $ with respect to $x$ we have
$$\phi(x,y) = \frac{1}{2}x^{2} + g(y)$$
Take derivative on both sides with respect to $y$ we get
$$\frac{\partial\phi}{\partial y} = g'(y)$$
Since we know that $\frac{\partial\phi}{\partial y} = y^{-3}+y^{-1}$
Then $g'(y) = y^{-3}+y^{-1}$
Integrate with respect to $y$ we have
$g(y) = -\frac{1}{2}y^{-2} + ln|y| + C$
Altogether, we have $\phi(x,y) = \frac{1}{2}x^{2} -\frac{1}{2}y^{-2} + ln|y| = C $, which means
$$\frac{1}{2}x^{2} -\frac{1}{2}y^{-2} + ln|y| = C$$
is the general solution to the given DE.
Besides, notice that the constant function $y(x)=0$ $\forall x$ is also a solution to the given DE.