MAT244--2019F > Term Test 2

Problem 4 (noon)

(1/2) > >>

Victor Ivrii:
Find the general real solution to
$$
\mathbf{x}'=\begin{pmatrix}
1 & 3\\
-2 &-3\end{pmatrix}\mathbf{x}
$$
and sketch trajectories.

Yuying Chen:
$\det(A-\lambda I)=0\\$
$\begin{vmatrix}
1-\lambda & 3 \\
-2 &  -3-\lambda\\
\end{vmatrix}=(1-\lambda)(-3-\lambda)+6=0\\$
$\qquad\qquad\qquad\qquad\qquad\qquad\quad \therefore \lambda=-1\pm \sqrt 2 i\\$
$\text{when $\lambda =-1+ \sqrt 2 i$},\\$
$
\begin{pmatrix}
2-\sqrt 2 i & 3 \\
-2 & -2-\sqrt 2 i
\end{pmatrix}= \begin{pmatrix}
2+\sqrt 2 i \\
-2
\end{pmatrix}\\$
$e^{(-1+ \sqrt 2 i)t}\begin{pmatrix}
2+\sqrt 2 i \\
-2
\end{pmatrix}=e^{-t}\begin{pmatrix}
2+\sqrt 2 i \\
-2
\end{pmatrix}(\cos\sqrt2t+i\sin\sqrt 2t)\\$
$\qquad\qquad\qquad\qquad =e^{-t}\begin{pmatrix}
2\cos\sqrt 2t+2i\sin\sqrt2t+\sqrt2i\cos\sqrt2t-\sqrt2\sin\sqrt2t \\
-2\cos\sqrt2t-2i\sin\sqrt2t
\end{pmatrix}\\$
$\qquad\qquad\qquad\qquad =e^{-t}i\begin{pmatrix}
2\sin\sqrt2t+\sqrt2\cos\sqrt2t\\
-2\sin\sqrt2t
\end{pmatrix}+e^{-t}\begin{pmatrix}
2\cos\sqrt 2t -\sqrt2\sin\sqrt2t\\
-2\cos\sqrt2t
\end{pmatrix}\\$
$\therefore x(t)=c_1e^{-t}\begin{pmatrix}
2\sin\sqrt2t+\sqrt2\cos\sqrt2t\\
-2\sin\sqrt2t
\end{pmatrix}+c_2e^{-t}\begin{pmatrix}
2\cos\sqrt 2t -\sqrt2\sin\sqrt2t \\
-2\cos\sqrt2t
\end{pmatrix}\\$

Ziqian Qiu:
this is my solution

Ziqian Qiu:
nvm I just updated the previous post

xuanzhong:
here's the solution including sketching.

Navigation

[0] Message Index

[#] Next page

Go to full version