$$y'''-2y''+4y'-8y=15cost$$
a) $$p(t)=-2$$
$$w=ce^{-\int p(t)}=ce^{\int2dt}=ce^{2t}$$
b)$$y'''-2y''+4y'-8y=0$$
$$r^3-2r^2+4r-8=0$$
$$(r-2)(r^2+4)=0$$
$$\therefore r=2,\pm2i$$
$$y_c(t)=c_1e^{2t}+c_2cos2t+c_3sin2t$$
$$w(y_1,y_2,y_3)(t)=\left[\begin{matrix}
e^{2t} & cos2t & sin2t \\
2e^{2t} & -2sin2t & 2cos2t \\
4e^{2t} & -4cos2t & -4sin2t
\end{matrix}\right]=16e^{2t}$$
$$\therefore w=ce^{2t}=16e^{2t}, c=16$$
c)Assume $$y_p(t)=Acost+Bsint$$
$$y'=-Asint+Bcost$$$$y''=-Acost-Bsint$$$$y'''=Asint-Bcost$$
By plugging in y,y',y'',y''' into the function
$$Asint-Bcost+2Acost+2Bsint-4Asint+4Bcost-8Acost-8Bsint=15cost$$
$$\begin{equation}
\left\{
\begin{array}{lr}
A+2B-4A-8B=0, & \\
-B+2A+4B-8A=15
\end{array}
\right.
\end{equation} $$
$$\Rightarrow
\begin{equation}
\left\{
\begin{array}{lr}
A+2B=0, & \\
B-2A=5
\end{array}
\right.
\end{equation}$$
$$\therefore \begin{equation}
\left\{
\begin{array}{lr}
A=-2, & \\
B=1, &
\end{array}
\right.
\end{equation}$$
$$y(t)=c_1e^{2t}+c_2cos2t+c_3sin2t-2cost+sint$$
OK, except LaTeX sucks:
2) "operators" should be escaped: \cos, \sin, \tan, \ln
$$
\boxed{y= -2\cos(t)+\sin(t) + C_1e^{2t} +C_2\cos(2t) +C_3\sin(2t).}
$$