Toronto Math Forum
Welcome,
Guest
. Please
login
or
register
.
1 Hour
1 Day
1 Week
1 Month
Forever
Login with username, password and session length
News:
Home
Help
Search
Calendar
Login
Register
Toronto Math Forum
»
MAT334-2018F
»
MAT334--Tests
»
Quiz-1
»
Q1: TUT 0203
« previous
next »
Print
Pages: [
1
]
Author
Topic: Q1: TUT 0203 (Read 6068 times)
Victor Ivrii
Administrator
Elder Member
Posts: 2607
Karma: 0
Q1: TUT 0203
«
on:
September 28, 2018, 04:13:59 PM »
$\renewcommand{\Re}{\operatorname{Re}}
\renewcommand{\Im}{\operatorname{Im}}$
Write (in complex number notation) the equation of the the circle through $0$, $2+2i$, and $2 - 2i$.
Logged
Ge Shi
Jr. Member
Posts: 8
Karma: 3
Re: Q1: TUT 0203
«
Reply #1 on:
September 28, 2018, 05:11:53 PM »
Since the circle through 0, 2+2i, 2-2i,
It means that the circle through (0,0), (2,2) and (2,-2)
thus, the equation of this circle in complex form is |z-2|=2
Logged
Vedant Shah
Jr. Member
Posts: 13
Karma: 8
Re: Q1: TUT 0203
«
Reply #2 on:
September 28, 2018, 06:03:17 PM »
This is the circle centered at $z_0=2$ with radius 2.
In other words, it is the set of points 2 units away from $z_0 = 2$. The distance of a given point, $z$, from $z_0$ is:
$d=|z-z_0|$
Thus the equation of this circle is:
$|z-2| = 2$
Logged
Print
Pages: [
1
]
« previous
next »
Toronto Math Forum
»
MAT334-2018F
»
MAT334--Tests
»
Quiz-1
»
Q1: TUT 0203