16
Quiz-4 / Re: Q4 TUT 0203
« on: October 26, 2018, 05:54:28 PM »\begin{equation*}
f( z) \ =\ z\ +\ \frac{1}{z} \ is\ the\ derivative\ of\ F( z) \ =\ \frac{z^{2}}{2} \ +\ Log( z)\\
\\
This\ is\ valid\ only\ where\ the\ function\ Log( z) \ is\ analytic.\ This\ domain\ in\ cludes\ the\ domain\ \\
Im\ z\ >\ 0.\ Hence,\\
\\
\int _{\gamma }\left( z\ +\ \frac{1}{z} \ \right) dz\ =\ \int _{\gamma } f( z) dz\ =\ \ \int _{\gamma } F'( z) dz\\
\\
=\ F( endpoint) \ -\ F( initial\ point)\\
\\
=F( 6+2i) \ -\ F( -4\ +\ i)\\
\\
=\left(\frac{( 6+2i)^{2}}{2} \ +\ Log( 6\ +\ 2i)\right) \ -\ \left(\frac{( -4+i)^{2}}{2} \ +\ Log( -4\ +\ i)\right)\\
\\
=\frac{17}{2} \ +\ 16i\ +\ Log( 6\ +\ 2i) \ -\ Log( -4\ +\ i)\\
\\
=\frac{17}{2} \ +\ 16i\ +\ \left( log\left(\sqrt{40}\right) \ +\ iArg( 6\ +\ 2i)\right) \ -\ \left( log\left(\sqrt{17}\right) \ +\ iArg( -4\ +\ i)\right)
\end{equation*}