1 [7 points]. Solve the initial value problem

$$
z^{\prime \prime}-3 z^{\prime}+2 z=2 e^{3 x}, \quad z(0)=1, \quad z^{\prime}(0)=0
$$

Solution:

Homogeneous solution: The characteristic equation is

$$
Q(r)=r^{2}-3 r+2=(r-1)(r-2) .
$$

Thus, $z_{h}=C_{1} e^{x}+C_{2} e^{2 x}$.
Particular Solution: Let $\mathcal{L}=z^{\prime \prime}-3 z^{\prime}+2 z$. Note $Q(3)=9-9+2=2$. Hence, using the "fast" method, take $r=3$ and $m=0$. We get

$$
2 e^{3 x}=\mathcal{L}\left(A \frac{x^{m}}{m!} e^{3 x}\right)=A e^{3 x} Q(3)
$$

So take $A=1$. This gives $z_{p}=e^{3 x}$.
Initial Conditions: We have from above $z=z_{h}+z_{p}=C_{1} e^{x}+C_{2} e^{2 x}+e^{3 x}$. Thus,

$$
z(0)=1 \Rightarrow 1=C_{1}+C_{2}+1
$$

and

$$
z^{\prime}(0)=0 \Rightarrow \quad 0=C_{1}+2 C_{2}+3 .
$$

So we find $C_{2}=-3$ and $C_{1}=3$.
So the solution to the IVP is $z=3 e^{x}-3 e^{2 x}+e^{3 x}$
2a [6 points]. Find solution $y_{2}(t)$ of

$$
\left(t^{2}-1\right) y^{\prime \prime}-2 t y^{\prime}+2 y=0
$$

where one of the solutions is $y_{1}(t)=t$ and solution y_{2} is such that $W\left(y_{1}, y_{2}\right)=$ -1 at $t=0$ and $y_{2}(0)=1$.

Solution:

Step 1: Abel's theorem gives $W=\exp \left(\int \frac{2 t}{t^{2}-1}\right)=C\left(t^{2}-1\right)$. Since we want $W\left(y_{1}, y_{2}\right)(0)=-1$, we must have $C=1$.

Step 2: Find y_{2}.
By definition of the Wronskian, $W=\operatorname{det}\left(\begin{array}{cc}t & y_{2} \\ 1 & y_{2}^{\prime}\end{array}\right)=t y_{2}^{\prime}-y_{2}$. So we obtain the linear ODE

$$
t y_{2}^{\prime}-y_{2}=t^{2}-1 \quad \Rightarrow \quad y_{2}^{\prime}-\frac{1}{t} y_{2}=\frac{t^{2}-1}{t} .
$$

An integrating factor is $\mu(t)=\exp \left(\int \frac{-1}{t}\right)$. So

$$
\frac{1}{t} y_{2}=\int \frac{t^{2}-1}{t^{2}}=t+\frac{1}{t}+C
$$

Hence, $y_{2}=t^{2}+1+C t$.
Step 3: Initial Conditions. We want $y_{2}(0)=1$, so we may take $C=0$.
So a solution is $y_{2}=t^{2}+1$
$\mathbf{2 b}$ [6 points]. Find a particular solution of equation

$$
\left(t^{2}-1\right) y^{\prime \prime}-2 t y^{\prime}+2 y=1 .
$$

Hint: use variation of parameters.

Solution

Step 1: From question 2a, $y_{1}=t$ and $y_{2}=t^{2}+1$ are linearly independent solutions to the homogeneous case. We further know $W\left(y_{1}, y_{2}\right)=t^{2}-1$.
Step 2: Use the hint of variation of parameters. Rewrite the equation as

$$
y^{\prime \prime}-\frac{2 t}{t^{2}-1} y^{\prime}+\frac{2}{t^{2}-1} y=\frac{1}{t^{2}-1}=: g(t) .
$$

Set $y_{p}=v_{1} t+v_{2}\left(t^{2}+1\right)$. The functions v_{1} and v_{2} satisfy

$$
\begin{aligned}
& v_{1}=-\int \frac{\left(t^{2}+1\right) g(t)}{W\left(y_{1}, y_{2}\right)} d t=-\int \frac{t^{2}+1}{\left(t^{2}-1\right)^{2}} d t=\int\left(-\frac{1}{2(t-1)^{2}}-\frac{1}{2(t+1)^{2}}\right) d t \\
& =\frac{1}{2(t-1)}+\frac{1}{2(t+1)}+C_{1}=\frac{t}{t^{2}-1}+C_{1}
\end{aligned}
$$

and
$v_{2}=\int \frac{t g(t)}{W\left(y_{1}, y_{2}\right)} d t=\int \frac{t}{\left(t^{2}-1\right)^{2}} d t=-\frac{1}{2\left(t^{2}-1\right)}+C_{2}$.
Then

$$
y_{p}=v_{1} y_{1}+v_{2} y_{2}=\frac{t}{t^{2}-1}(t)-\frac{1}{2\left(t^{2}-1\right)}\left(t^{2}+1\right)=\frac{1}{2} .
$$

So $y_{p}=\frac{1}{2}$
3 [7 points]. Find a particular solution of equation

$$
t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=t^{3} e^{t}
$$

[Bonus: 3 points] Explain whether the method of undetermined coefficients to find a particular solution of equation $t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=t^{3} e^{t}$ applies.

Solution

Strategy: use variation of parameters.
Step 1: Find two linearly independent solutions. By making the substitution $x=\ln (t)$, we extract the characteristic equation

$$
Q(r)=r^{2}-(2+1) r+2=(r-1)(r-2)
$$

Thus $y_{1}=e^{2 x}=t^{2}$ and $y_{2}=e^{t}=t$ are linearly independent solutions to the homogeneous case.

Step 2: Set $y_{p}=v_{1} y_{1}+v_{2} y_{2}$. Compute $W\left(y_{1}, y_{2}\right)=-t^{2}$. Since $g(t)=t e^{t}$, we have

$$
v_{1}=-\int \frac{t g(t)}{W\left(y_{1}, y_{2}\right)} d t=-\int \frac{t \cdot t e^{t}}{-t^{2}} d t=e^{t}+C_{1}
$$

and

$$
v_{2}=\int \frac{t^{2} g(t)}{W\left(y_{1}, y_{2}\right)} d t=\int \frac{t^{2} \cdot t e^{t}}{-t^{2}} d t=-t e^{t}+e^{t}+C_{2}
$$

So $y_{p}=e^{t} \cdot t+\left(-t e^{t}+e^{t}\right) \cdot t^{2}=y_{p}=t e^{t}$

Bonus

No: For Euler $O D E$ the method of undetermined coefficients requires the right hand side to be $P(\ln t) t^{m}$, while it applies with $P(t) e^{m t}$ (where in both cases $P(x)$ is a polynomial in x) only when the coefficients of the ODE are constants.

4 [7 points]. Find a particular solution of equation

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}+4 y^{\prime}-8 y=e^{3 x}
$$

Solution

Strategy: This is a constant coefficient ODE, so use the fast method shown in class. The methods of undetermined coefficients or variation of parameters will work too, but they will involve more computation.
Let $\mathcal{L}=y^{\prime \prime \prime}-2 y^{\prime \prime}+4 y^{\prime}-8$. Guess of the form $y_{p}=A \frac{x^{m}}{m!} e^{3 x}$, for some m. The characteristic equation of \mathcal{L} is $Q(r)=r^{3}-2 r^{2}+4 r-8$. Notice that $Q(3)=27-18+12-8=13 \neq 0$.
Thus take $m=0$. Then $\mathcal{L}\left(A \frac{x^{m}}{m!} e^{3 x}\right)=A e^{3 x} Q(3)$. Since we want $\mathcal{L}\left(A \frac{x^{m}}{m!} e^{3 x}\right)=$ $e^{3 x}$, we find $A=\frac{1}{13}$.
So $y_{p}=\frac{1}{13} e^{3 x}$

5 [7 points]. Solve the system of ordinary differential equations

$$
\left\{\begin{array}{l}
x_{t}^{\prime}=5 x-3 y \\
y_{t}^{\prime}=6 x-4 y
\end{array}\right.
$$

Solution

Step 1: Rewrite the system in matrix form:

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
5 & -3 \\
6 & -4
\end{array}\right)\binom{x}{y}=: A \bar{x}
$$

Step 2: Find the eigenvalues of A.
$\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}5-\lambda & -3 \\ 6 & -4-\lambda\end{array}\right)=-(5-\lambda)(4+\lambda)-(-18)=(\lambda+1)(\lambda-2)$
So $\lambda=-1,2$ are eigenvalues.
Step 3: Find the corresponding eigenvectors.
(1) $\lambda=-1$:

$$
0=(A+I) \bar{v}=\left(\begin{array}{ll}
6 & -3 \\
6 & -3
\end{array}\right)\binom{v_{1}}{v_{2}} \Rightarrow 0=6 v_{1}-3 v_{2}
$$

So we may take $v_{1}=1$, and find $v_{2}=2$. Thus $\binom{1}{2}$ is an eigenvector.
(2) $\lambda=2$:

$$
0=(A-2 I) \bar{v}=\left(\begin{array}{ll}
3 & -3 \\
6 & -6
\end{array}\right)\binom{v_{1}}{v_{2}} \Rightarrow 0=v_{1}-v_{2}
$$

So we may take $v_{1}=1$, and find $v_{2}=1$. Thus $\binom{1}{1}$ is an eigenvector.
So $\binom{x}{y}=C_{1} e^{-t} \cdot\binom{1}{2}+C_{2} e^{2 t} \cdot\binom{1}{1}$.
Remark. To find the general solution of $x^{\prime}=A x$ with $n \times n$ diagonalizable matrix A it suffices to find all eigenvalues λ_{j} and and the corresponding eigenvectors v_{j}; then the answer is $\sum_{j} C_{j} e^{t \lambda_{j}} v_{j}$ where $C_{j}(j=1, \ldots, n)$ are constants. (It is not necessary to find T^{-1} for the matrix T whose columns are vectors v_{j}).

