Let $z=x+iy$
Then $Re(z) = x$ and $|z-i| = |x+i(y-1)|$
Thus:
$Re(z) = |z-i|$
$x = |x+i(y-1)|$
$x = \sqrt{x^2 + (y-1)^2}$
$x^2 = x^2 +(y-1)^2, x \ge 0$
$(y-1)^2 = 0, x \ge 0$
$y=1, x \ge 0$
In complex terms:
$ y = 1 \iff Im(z) = 1$ and $ x \ge 0 \iff Re(z) \ge 0$
Thus the equation of the line in complex terms is:
$Im(z) = 1, Re(z) \ge 0$
This is the horizontal half line extending from $z=i$ rightward.