Toronto Math Forum
Welcome,
Guest
. Please
login
or
register
.
1 Hour
1 Day
1 Week
1 Month
Forever
Login with username, password and session length
News:
Home
Help
Search
Calendar
Login
Register
Toronto Math Forum
»
MAT244--2018F
»
MAT244--Tests
»
Quiz-5
»
Q5 TUT 0801
« previous
next »
Print
Pages: [
1
]
Author
Topic: Q5 TUT 0801 (Read 5059 times)
Victor Ivrii
Administrator
Elder Member
Posts: 2607
Karma: 0
Q5 TUT 0801
«
on:
November 02, 2018, 03:17:54 PM »
Transform the given initial value problem into an initial value problem for two first order equations.
$$\left\{\begin{aligned}
&u'' + 0.25u' + 4u = 2 \cos (3t),\\
&u(0) = 1,\qquad u'(0) = -2.
\end{aligned}\right.$$
Logged
Guanyao Liang
Jr. Member
Posts: 13
Karma: 12
Re: Q5 TUT 0801
«
Reply #1 on:
November 02, 2018, 03:58:09 PM »
Answer in the attachment.
Logged
Zhiya Lou
Jr. Member
Posts: 12
Karma: 12
Re: Q5 TUT 0801
«
Reply #2 on:
November 02, 2018, 04:13:29 PM »
Let $x_1= u, x_2=u'$
Then substitute it into original equation:
$ x_2'+0.25x_2+4x_1 = 2\cos(3t)$
So, we can transform into the system:
$x_1'=x_2$
$ x_2'+0.25x_2+4x_1 = 2\cos(3t)$
With given initial value:$x_1(0)=1, x_2(0)= -2$
«
Last Edit: November 02, 2018, 04:15:39 PM by Zhiya Lou
»
Logged
Print
Pages: [
1
]
« previous
next »
Toronto Math Forum
»
MAT244--2018F
»
MAT244--Tests
»
Quiz-5
»
Q5 TUT 0801