$$2y''+y'-4y=0,y(0)=0,y'(0)=1$$
We assume that $y=e^{rt}$, and then it follows that $r$ must be a root of characteristic equation $$2r^2+r-4=0$$
We use the quadratic formula which is
$$r={-b\pm \sqrt{b^2-4ac}\over 2a}$$
Hence,
$$\cases{r_1={-1+\sqrt{33}\over 4}\\r_2={-1-\sqrt{33}\over 4}}$$
Since the general solution has the form of $$y=c_1e^{r_1t}+c_2e^{r_2t}$$
Then the general solution of the given differential equation is
$$y=c_1e^{{-1+\sqrt{33}\over 4}t}+c_2e^{{-1-\sqrt{33}\over 4}t}$$
We also need $y'$ for the IVP,
$$y'={-1+\sqrt{33}\over 4}c_1e^{{-1+\sqrt{33}\over 4}t}+{-1-\sqrt{33}\over 4}c_2e^{{-1-\sqrt{33}\over 4}t}$$
To satisfy the first initial condition, we set $t=0$ and $y=0$, thus
$$c_1+c_2=0$$
To satisfy the second initial condition, set $t=0$ and $y'=1$, thus
$${-1+\sqrt{33}\over 4}c_1+{-1-\sqrt{33}\over 4}c_2=1$$
Hence,
$$\cases{c_1+c_2=0\\{-1+\sqrt{33}\over 4}c_1+{-1-\sqrt{33}\over 4}c_2=1} \implies \cases{c_1={2\over \sqrt{33}}\\c_2=-{2\over \sqrt{33}}}$$
Therefore, the solution of the initial value problem is
$$y={2\over \sqrt{33}}e^{{-1+\sqrt{33}\over 4}t}-{2\over \sqrt{33}}e^{{-1-\sqrt{33}\over 4}t}$$
Note: $y \rightarrow \infty$ as $t \rightarrow \infty$.