First, we convert the Laplacian to polar coordinates: $\Delta u =u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}$. Write $u=RP$, so that we can solve the problem of form $\frac{r^2R''+rR'}{R}+\frac{P''}{P}=0$
Now, notice that boundary condition (4) becomes $u(r,0)=u(r,\pi)=0$ in polar coordinates. This gives us a condition for periodicity in P, so that we can associate a negative eigenvalue $-\lambda_n=-\omega_n^2$ to it. Solving $P''+\omega_n^2 P=0$ gives us $P=A_n \cos (\omega_n \theta) + B_n \sin (\omega_n \theta)$. We can immediately eliminate the $A_n$ term, because of the boundary condition on $\theta=0$, and we can also conclude that $\omega_n \pi = n \pi$ means that our $\omega_n=n$, $\lambda = n^2$.
Now, we expect some equations of the form $r^m$ for the solution to R. Solving the Euler problem $r^2R+rR'=\lambda R$ gives $m(m-1)+m=n^2\rightarrow m = \pm n$. So $R=A_n r^n+B_n r^{-n}$. Neither term can be negated, as r does not tend to 0 or infinity. However, $A_0$ and $B_0$ can be ignored as they do not obey the periodic behaviour we expect.
This gives general form $u(r,\theta) = \sum_{n=1}^\infty(A_n r^n+B_n r^{-n})\sin (n \theta)$. Now, we consider boundary conditions (2) and (3) in the cases $r=2, r=2^{-1}$ respectively.
Then
$u(2,\theta) = \sum_{n=1}^\infty(A_n 2^n+B_n 2^{-n})\sin (n \theta) = 1$ (2)
$u(2^{-1},\theta) = \sum_{n=1}^\infty(A_n 2^{-n}+B_n 2^{n})\sin (n \theta) = -1$ (3)
If we add these two summations together, this implies that $B_n=-A_n$. Use this simplification to find the fourier coefficients in (2):
$u(2,\theta) = \sum_{n=1}^\infty A_n (2^n - 2^{-n})\sin (n \theta) = 1$
Substitute $C_n=A_n(2^n-2^{-n})$. Then $C_n=\frac{2}{\pi}\int_0^\pi sin (n \theta) d\theta = \frac{4}{n\pi}$ for n odd, $0$ for n even.
So $u(r,\theta) = \sum_{n=1}^\infty \frac{4}{n\pi(2^n-2^{-n})} (r^n - r^{-n})\sin (n \theta)$