Author Topic: Q1: TUT0602  (Read 846 times)

Jake Kirbie

  • Newbie
  • *
  • Posts: 1
  • Karma: 0
    • View Profile
Q1: TUT0602
« on: September 27, 2019, 02:31:55 PM »
Solve the given differential equation:

$$\frac{dy}{dx} = \frac{x-e^{-x}}{y+e^y}$$

This is a separable differential equation. Rearranging, we have

$$(y+e^y)dy = (x-e^{-x})dx\ \Rightarrow\ \int(y+e^y)dy = \int(x-e^{-x})dx\ \Rightarrow\ y^2 + 2e^y = x^2 + 2e^{-x} + C$$

is the general implicit solution.
« Last Edit: September 27, 2019, 04:34:28 PM by Jake Kirbie »