MAT244--2019F > Term Test 2

Problem 1 (main sitting)

<< < (2/2)

For the third solution, I believe there are some typo in Question a). For the last two equations, $y_2$ is missing, it should be $\frac{1}{2} \sin2t( 2t - tant)$, or simplify $\sin2t(t - \frac{1}{2}tant)$.

Vy Nguyen:
(Almost perfect typing appreciated). V.I.

Solve the homogeneous equation: $y''+4y = 0$
fundamental set of solutions:
$$y_1 (t)=\cos(2t)$$
$$y_2 (t)=\sin(2t)$$
homogeneous solution:
$$y_h (t)=c_1 \cos(2t) + c_2 \sin(2t)$$
Solve for a particular solution using variation of parameters:
Find the Wronskian:
    \cos(2t) & \sin(2t) \\
    -2\sin(2t) & 2\cos(2t)\\
$$=2\cos^2 (2t) + 2\sin^2 (2t) = 2$$
Solve for $\mu_1 (t)$:
$$\mu_1 (t)=-\int \frac {y_2 (t) g(t)}{W} dt$$
$$=\int \frac {-\sin(2t)}{2\cos^2 t} dt$$
use identity $2\cos^2 t = \cos(2t) +1$$$=\int \frac {-\sin(2t)}{\cos(2t)+1} dt$$
let $u=\cos(2t)+1$ then $\frac{1}{2}du=-\sin(2t) dt$$$=\frac{1}{2} \int \frac {1}{u} du$$
$$=\frac{1}{2} \ln(u)$$
$$=\frac{1}{2} \ln(\cos(2t)+1)$$
Solve for $\mu_2 (t)$:
$$\mu_2 (t)=\int \frac {y_1 (t) g(t)}{W} dt$$
$$=\int \frac {\cos(2t)}{2\cos^2 t} dt$$
use identity $\cos(2t)=2\cos^2 (t)-1$$$=\int \frac {2\cos^2 t-1}{2\cos^2 t} dt$$
$$=\int 1 - \frac {1}{2\cos^2 t} dt$$
$$=\int 1 - \frac {1}{2}\sec^2 t \, dt$$
$$=t - \frac{1}{2}\tan t$$
particular solution:
$$y_p(t)=\frac{1}{2}\cos(2t)\ln [\cos(2t)+1] + t\sin(2t) - \frac{1}{2}\sin(2t)\tan t$$
Therefore, general solution to ODE is:
$$y(t) = y_h(t) + y_p(t)$$
$$y(t) = c_1\cos(2t) + c_2\sin(2t) + \frac{1}{2}\cos(2t)\ln [\cos(2t)+1] + t\sin(2t) - \frac{1}{2}\sin(2t)\tan t$$

Take the derivative of the general solution:
$$y'(t)=-2c_1\sin(2t)+2c_2\cos(2t)-\sin(2t)\ln[\cos(2t)+1] - \frac{(\cos(2t))(\sin(2t))}{\cos(2t)+1} + \sin(2t) + 2t\cos(2t) - \cos(2t)\tan t - \frac{1}{2}\sin(2t)\sec^2t$$
Use the initial conditions to solve for constants $c_1$ and $c_2$:
Therefore the solution that satisfies the initial conditions is:
$$y(t)=-\frac{\ln2}{2}\cos(2t)+\frac{1}{2}\cos(2t)\ln[\cos(2t)+1]+t\sin(2t)-\frac{1}{2}\sin(2t)\tan t$$

Mingdi Xie:
This is my solutions for problem1.


[0] Message Index

[*] Previous page

Go to full version