MAT244-2013F > Quiz 2

Problem 1, Night sections


Victor Ivrii:
Assume that $p$ and $q$ are continuous and that the functions $y_1$ and $y_2$ are solutions of the differential equation
on an open interval $I$.

Prove that if $y_1$ and $y_2$ are zero at the same point in $I$, then they cannot be a fundamental set of solutions on that interval.

Yangming Cai:
if $y_1$ and $y_2$ are zero at the same point in $I$,then its Wronskian , which is $y_1y_2'-y_2y_1'=0 $   and then $y_1$ and $y_2$ are not linearly independent, indicating that they cannot form a fundamental solution on that interval

Tianqi Chen:

Victor Ivrii:

--- Quote from: Tianqi Chen on November 01, 2013, 11:22:46 AM ---Question1

--- End quote ---

What is the reason to post inferior (scanned) solution after a better -- typed has been posted?


[0] Message Index

Go to full version