Last name First name ID \qquad Section	\#	points	Mark
	1	[20]	
	2	[20]	
	3	[20]	
	4	[20]	
	5	[20]	
	Tota	[100]	

1. (20 pts) Consider the first order equation:

$$
\begin{equation*}
u_{t}+x u_{x}=0 . \tag{1}
\end{equation*}
$$

(a) Find the characteristic curves and sketch them in the (x, t) plane.
(b) Write the general solution.
(c) Solve equation (1) with the initial condition $u(x, 0)=\cos (2 x)$. Explain why the solution is fully determined by the initial condition.
(d) (bonus 5 pts) Describe domain in which solution of

$$
\begin{equation*}
u_{t}+x^{2} u_{x}=0, \quad x>0 \tag{2}
\end{equation*}
$$

is fully determined by the initial condition $u(x, 0)=g(x)(x>0)$.
2. (20 pts) Consider the initial value problem for the wave equation posed on the left half-line:

$$
\begin{cases}u_{t t}-u_{x x}=0, & -\infty<x<0 \\ u(x, 0)=f(x), & -\infty<x<0 \\ u_{t}(x, 0)=g(x), & -\infty<x<0\end{cases}
$$

Do the initial conditions uniquely determine the solution in the region $\{(t, x): t \in \mathbb{R},-\infty<x<0\}$. Explain your answer with convincing arguments.
3. (20 pts) Consider the PDE with boundary conditions:

$$
\begin{array}{ll}
u_{t t}+K u_{x x x x}+\omega^{2} u=0, & 0<x<L, \\
u(0, t)=u_{x}(0, t)=0, & \\
u(L, t)=u_{x}(L, t)=0, &
\end{array}
$$

where $K>0$ is constant. Prove that the energy $E(t)$ defined as

$$
E(t)=\frac{1}{2} \int_{0}^{L}\left(u_{t}^{2}+K u_{x x}^{2}+\omega^{2} u^{2}\right) d x
$$

does not depend on t.
4. (20 pts) Consider the initial value problem for the diffusion equation on the line:

$$
\begin{cases}u_{t}=k u_{x x}, & x \in \mathbb{R} \\ u(x, 0)=f(x), & x \in \mathbb{R}\end{cases}
$$

(a) Assuming f is smooth and vanishes when $|x|>10$, give a formula for the solution $u(x, t)$.
(b) Using the formula from part (a), prove that

$$
\lim _{t \searrow 0} u(x, t)=f(x) .
$$

5. (20 pts) The functions H and Q are defined as follows:

$$
\begin{aligned}
& H(x)= \begin{cases}1, & x>0 \\
0, & x \leq 0\end{cases} \\
& Q(x)= \begin{cases}1, & |x| \leq 1 \\
0, & |x|>1\end{cases}
\end{aligned}
$$

Consider the function

$$
C(x)=\int_{-\infty}^{+\infty} H(x-y) Q(y) d y
$$

(a) Graph the function $C(x)$.
(b) Identify the set of points x where $C(x)>0$.

