Toronto Math Forum
Welcome,
Guest
. Please
login
or
register
.
1 Hour
1 Day
1 Week
1 Month
Forever
Login with username, password and session length
News:
Home
Help
Search
Calendar
Login
Register
Toronto Math Forum
»
MAT334--2020F
»
MAT334--Lectures & Home Assignments
»
Chapter 1
»
1.6 Q5
« previous
next »
Print
Pages: [
1
]
Author
Topic: 1.6 Q5 (Read 3563 times)
Nathan
Newbie
Posts: 2
Karma: 0
1.6 Q5
«
on:
October 06, 2020, 06:08:35 PM »
Question: $\int_y Re(z) dz$ where $y$ is the line segment from 1 to $i$.
I can't get the same answer as the one in the textbook.
Answer in textbook: $\frac{1}{2}(i-1)$
My answer:
$y(t)=$
$= 1 + (i - 1)t$
$= (1 - t) + it$
$y'(t) = i - 1$
$\int_y Re(z) dz=$
=$\int_1^i (1-t)(i-1)dt$
$=\int_1^i i - 1 - ti + t dt$
$=ti - t - \frac{t^2i}{2} + \frac{t^2}{2}|^i_1$
$=-1 -i + \frac{i}{2} - \frac{1}{2} - (i - 1-\frac{i}{2} + \frac{1}{2})$
$=-i - 1$
What is wrong with my answer?
Logged
smarques
Newbie
Posts: 2
Karma: 0
Re: 1.6 Q5
«
Reply #1 on:
October 06, 2020, 06:29:36 PM »
Hi Nathan.
The mistake seems to be in your bounds of integration, not the process itself. With the way you parameterized the line, the integral should be from 0 to 1, not 0 to i.
Logged
Print
Pages: [
1
]
« previous
next »
Toronto Math Forum
»
MAT334--2020F
»
MAT334--Lectures & Home Assignments
»
Chapter 1
»
1.6 Q5