Author Topic: TT2--Problem 4  (Read 7690 times)

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2607
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
TT2--Problem 4
« on: November 15, 2012, 08:23:51 PM »
Find Fourier transform of the  function
\begin{equation*}
f(x)= \left\{\begin{aligned}
&1-|x| &&|x|<1\\
&0 &&|x|>1.
\end{aligned}\right.
\end{equation*}
and write this function $f(x)$ as a Fourier integral.

Post after 22:30

Ian Kivlichan

  • Sr. Member
  • ****
  • Posts: 51
  • Karma: 17
    • View Profile
Re: TT2--Problem 4
« Reply #1 on: November 15, 2012, 11:46:03 PM »
Hopeful solution attached! :)

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2607
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Re: TT2--Problem 4
« Reply #2 on: November 16, 2012, 07:02:54 AM »
Actually since $f$ is an even function so is $\hat{f}$ and $f(x)$ could be written as $\cos$-Fourier integral.

BTW plugging $x=0$ we can calculate $\int_0^\infty \frac{1-\cos(\omega)}{\omega^2}\,d\omega$.