The textbook solution $\displaystyle z^2 \sum_{n=0}^{\infty}(-1)^n z^{2n} \left(\sum_{j=0}^n\frac{1}{(2j+1)!(2n - 2j + 1)!}\right)$ is indeed complex, even though $\displaystyle \sin^2 z = \frac{1 - \cos(2z)}{2} = \frac{1}{2} - \frac{\cos(2z)}{2}$ by using the trig ID for $\sin^2$. The author likely used the multiplication formula for $\sin^2 z$, which isn't efficient as it can be expressed as a cosine function without using the multiplcation formula. Evaluate them individually whenever you can reduce a product of functions into a more familiar form.
The power series for $\cos(z)$ is given by $\displaystyle \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!}z^{2n}$, and it follows that the power series of $\cos(2z)$ is $\displaystyle \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!}(2z)^{2n}$ Then, by scalar multiplcation by $\frac{1}{2}$, we obtain $\displaystyle \sum_{n=0}^{\infty} \frac{(-1)^n}{2(2n)!}(2z)^{2n}$
Furthermore, express $\frac{1}{2}$ as a geometric series, $\displaystyle \frac{1}{4}\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{4}\frac{1}{1 - 1/2} = \frac{1}{4}\frac{1}{(1/2)} = \frac{1}{4}2 = \frac{1}{2}$. Note the geometric series is $\displaystyle \sum_{n=0}^{\infty} r^n = \frac{1}{1 - r}, |r| < 1$.
We evaluate the power series:
$\displaystyle \sin^2 (z) = \frac{1}{2} - \frac{\cos(2z)}{2}$: The "multiplication formula" is no longer relevant. Just use scalar multiplication.
$\displaystyle = \frac{1}{2} - \sum_{n=0}^{\infty}\frac{(-1)^n}{2(2n)!}(2z)^{2n}$: Good enough, but we can do something further to deal with the constant term.
$\displaystyle = \frac{1}{2} - \frac{(-1)^0}{2(0!)}z^0 - \sum_{n=1}^{\infty}\frac{(-1)^n}{2(2n)!} (2z)^{2n} = \frac{1}{2} - \frac{+1}{2} - \sum_{n=1}^{\infty}\frac{(-1)^n}{2(2n)!}(2z)^{2n} = - \sum_{n=1}^{\infty}\frac{(-1)^n}{2(2n)!} (2z)^{2n} = + \sum_{n=1}^{\infty}\frac{(-1)(-1)^n}{2(2n)!} (2z)^{2n}$: We find out the constant term cancels out.
$\displaystyle = \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{2(2n)!} (2z)^{2n}$, an alternating power series with odd $n$ positive, or terms with powers divisible by 2 but not by 4 positive.
Edit: Constant term cancels out, fixed general geometric series formula.