16
Quiz-6 / Re: Q6 TUT 5101
« on: November 17, 2018, 04:07:45 PM »
a) Finding the eigenvalues:
Set the determinant = 0
\begin{align}
(2 - \lambda)(-2 - \lambda) - (-5)(\alpha) &= 0\\
\lambda^2 - 4 + 5\alpha &= 0\\
\lambda &= \pm \sqrt{4 - 5\alpha}
\end{align}
b)
Case 1: Eigenvalues real and opposite sign
when: $\alpha$ < $\frac{4}{5}$ (unstable saddle)
Case 2: Eigenvalues complex and opposite sign
when: $\alpha$ > $\frac{4}{5}$ (stable centre)
c) will post below:
Set the determinant = 0
\begin{align}
(2 - \lambda)(-2 - \lambda) - (-5)(\alpha) &= 0\\
\lambda^2 - 4 + 5\alpha &= 0\\
\lambda &= \pm \sqrt{4 - 5\alpha}
\end{align}
b)
Case 1: Eigenvalues real and opposite sign
when: $\alpha$ < $\frac{4}{5}$ (unstable saddle)
Case 2: Eigenvalues complex and opposite sign
when: $\alpha$ > $\frac{4}{5}$ (stable centre)
c) will post below: