Author Topic: TUT0302  (Read 4406 times)

annielam

  • Jr. Member
  • **
  • Posts: 6
  • Karma: 0
    • View Profile
TUT0302
« on: October 11, 2019, 02:00:15 PM »
Find the Wronskian of two solutions of the given differential equation.
$x^2y''+xy'+(x^2-v^2)y=0$

$y''+\frac{x}{x^2}y'+\frac{x^2-v^2}{x^2}y=0$
$y''+\frac{1}{x}y'+{x^2+y^2}{x^2}y=0$

$p(t)=\frac{1}{x}$
$=cexp(-\int \frac{1}{x}dx)$
$=cexp(-lnx)$
$=ce^{-lnx}$
$=c\frac{1}{x}$

$W=\frac{c}{x}$