Firstly, we need to find the eigenvalues and eigenvectors.
$det(A-\lambda I) = det\left|\begin{matrix}1-\lambda & 1 & 1 \\ 2 & 1-\lambda & -1 \\ -8 & -5 & -3-\lambda\end{matrix}\right| = (\lambda + 2)(\lambda - 2)(\lambda + 1)$
Thus, the eigenvalues are $\lambda_1 = -2, \lambda_2 = -1, \lambda_3 = 2$
When $\lambda_1 = -2, (A - \lambda I) = (A + 2I) = \left(\begin{matrix}3 & 1 & 1 \\ 2 & 3 & -1 \\ -8 & -5 & -1\end{matrix}\right)$
\begin{equation*}
\begin{pmatrix}
3 & 1 & 1\\
2 & 3 & -1\\
-8 & -5 & -1
\end{pmatrix}
\begin{pmatrix}
x_1\\
x_2\\
x_3
\end{pmatrix}=0
\end{equation*}
Let x_1 = t
\begin{equation*}
\begin{pmatrix}
x_1\\
x_2\\
x_3
\end{pmatrix}=t
\begin{pmatrix}
-4\\
5\\
7
\end{pmatrix}
\end{equation*}
Therefore, the corresponding eigenvector $\vec{v_1} = \left(\begin{matrix}-4 \\ 5 \\ 7\end{matrix}\right) $
Similarly, when $\lambda_2 = -1, \lambda_3 = 2$, we can get $\vec{v_2} = \left(\begin{matrix}-3 \\ 4 \\ 2\end{matrix}\right)
and \ \vec{v_3} = \left(\begin{matrix}0 \\ -1 \\ 1\end{matrix}\right)$ respectively.
Therefore, the general solution $X(t) = c_1 e^{-t} \left(\begin{matrix}-3 \\ 4 \\ 2\end{matrix}\right) + c_2 e^{2t} \left(\begin{matrix}0 \\ -1 \\ 1\end{matrix}\right) + c_3 e^{-2t} \left(\begin{matrix}-4 \\ 5 \\ 7\end{matrix}\right)$